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Abstract: It has recently been shown that the Einstein equation can be derived by

demanding a non-equilibrium entropy balance law dS = δQ/T + diS hold for all local

acceleration horizons through each point in spacetime. The entropy change dS is propor-

tional to the change in horizon area while δQ and T are the energy flux across the horizon

and Unruh temperature seen by an accelerating observer just inside the horizon. The in-

ternal entropy production term diS is proportional to the squared shear of the horizon

and the ratio of the proportionality constant to the area entropy density is ~/4π. Here

we will show that this derivation can be reformulated in the language of hydrodynamics.

We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the

holographic principle. Hydrodynamic perturbations of this state exist and are manifested

in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations

of hydrodynamics we derive the entropy balance law and show the Einstein equation is a

consequence of vacuum hydrodynamics. This result implies that ~/4π is the shear viscosity

to entropy density ratio of the local vacuum thermal state. The value ~/4π has attracted

much attention as the shear viscosity to entropy density ratio for all gauge theories with

an Einstein gravity dual. It has also been conjectured as the universal lower bound on the

ratio. We argue that our picture of the vacuum thermal state is consistent with the physics

of the gauge/gravity dualities and then consider possible applications to open questions.
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1. Introduction

One important clue about the nature of quantum gravity is that the Einstein field equation

and quantum field theory in curved spacetime imply that black holes behave as thermo-

dynamical objects consistent with the four laws of thermodynamics. They are endowed

with an entropy proportional to the cross-sectional area of the event horizon [1] and a

temperature due to quantum Hawking radiation [2]. Although this interplay of gravita-

tion, quantum field theory, and thermodynamics has been a focus of research for over 30

years, it has yet to be completely understood. One fascinating idea was the proposal by

Jacobson [3] to reverse the logic of black hole thermodynamics and derive the Einstein

equations as a consequence of spacetime thermodynamics and quantum field theory. The

idea is that the local acceleration horizons that exist through every point in spacetime are

analogous to tiny pieces of a black hole event horizon and have an entropy proportional

to their area. The equivalence principle is then invoked to view the local neighborhood

around any point in a general curved spacetime as a piece of flat spacetime. Even in flat

spacetime accelerated observers can never receive information from certain regions. For

these observers, quantum fields are localized to the Rindler wedge of flat spacetime and

they view the usual Minkowski vacuum as precisely a thermal state [4, 5]. This supplies the

notion of a local temperature. By demanding the Clausius relation dS = δQ/T at every

point, where δQ is the flow of energy across the horizon and T is the Unruh temperature,

Jacobson was able to show the Einstein equation appears as an equation of state. This

derivation supports the idea that macroscopic spacetime dynamics is just the thermody-

namics of the quantum vacuum. In the past several years other related work has shown

that in certain spacetimes (spherically symmetric, axisymmetric, and cosmological) the

gravitational field equations near a horizon can also be re-expressed as the thermodynamic
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identity TdS = dE + pdV [6, 7]. These results have deep implications, but their true

significance (if any) is not yet clear.

Recently, in order to probe Jacobson’s derivation further, a horizon entropy propor-

tional to a function of the Ricci scalar was considered [8]. The idea was to determine

whether higher curvature correction terms that one expects from effective field theory to

appear in the gravitational field equation (or action) can be derived from the thermody-

namical prescription. It was found that the field equations of f(R) gravity can be derived

only if the setting is shifted from equilibrium to non-equilibrium thermodynamics.1 An

extra internal entropy production term proportional to the squared expansion of the hori-

zon is required for the Clausius relation (or now more properly the entropy balance law) to

hold. Perhaps more importantly, it was realized that the original derivation of the Einstein

equation via an area entropy can be easily generalized to a non-equilibrium setting. In this

case an entropy production term proportional to the squared shear of the horizon appears

when the entropy balance law holds. Consistency with the Einstein equation requires that

the ratio of the shear term coefficient to area entropy density be ~/4π.2

The purpose of this paper is to explore the meaning of these additional terms. The

existence of entropy production terms proportional to squared shear and expansion is remi-

niscent of the shear and bulk viscosity terms that appear in viscous fluid hydrodynamics. A

connection between horizon dynamics and fluid dynamics was first noticed by Damour [10].

In the 1980’s Price, Thorne, and collaborators further developed this picture into the black

hole “membrane paradigm” [11], using a timelike stretched horizon to approximate the null

horizon. The shear and expansion of the horizon also appear in the membrane paradigm,

where they are interpreted to be viscous terms in the law describing how the horizon

area/entropy changes. However, this interpretation is just an analogy and it is not clear if

there is a deep relationship between the dynamics of causal horizons and hydrodynamics.

If there is a relationship we must not only understand horizons as a fluid system, but also

the physics of this system must be consistent with hydrodynamics as an effective theory.

In hydrodynamics, viscosities are phenomenological coefficients in the linear constitutive

relations between fluxes of momentum in the fluid and the thermodynamic “forces” given

by gradients of the fluid velocity. These velocity gradients must be small (both in space and

time) compared to some microscopic scale for hydrodynamics to be an accurate description

of the near-equilibrium physics.

After reviewing the thermodynamic derivation in detail we will show that it can be

consistently reformulated in the language of hydrodynamics. We argue the Minkowski

vacuum, which is a thermal state when localized in the Rindler wedge of spacetime, is

holographic [12, 13]; its properties are encoded into the 2+1 dimensional system near the

Rindler horizon. This is because the degrees of freedom in this thermal atmosphere are

essentially piled up near the horizon boundary. The velocity and temperature gradients

associated with these degrees of freedom can be made small enough so that hydrodynamics

is the appropriate effective theory. Therefore we think of these thermal atmosphere degrees

1For another viewpoint where non-equilibrium thermodynamics is not required in this case, see [9]
2We use units where c = kB = 1.
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of freedom as a fluid living on a stretched horizon approximating the local acceleration

horizon. Using hydrodynamics and the properties of the stretched horizon, we will derive

the entropy balance law postulated in [8], showing that it is appropriate to interpret the

coefficients of the shear and expansion terms in this law as shear and bulk viscosities

respectively. Just as in the thermodynamic derivation, the entropy balance law requires

that spacetime dynamics is governed by the Einstein equation and that the shear viscosity

to entropy density ratio is ~/4π. Therefore in this more general formulation Einstein’s

equation is a consequence of the hydrodynamics of spacetime vacuum.

The value ~/4π has attracted considerable attention over the past few years from work

on the celebrated anti-de Sitter (AdS) /conformal field theory (CFT) correspondence [14].

This correspondence states that certain gauge theories in flat spacetime are equivalent to

a quantum gravity theory in a higher dimensional AdS spacetime. Hydrodynamics arises

as the description for the dynamics of long wavelength perturbations about equilibrium

in high temperature gauge theory plasmas. Working on the gravity side of the duality

it has been found that ~/4π is the value of the shear viscosity to entropy density ratio

for all gauge theories with an Einstein gravity dual [15]. Kovtun, Son, and Starinets

conjectured that these theories may saturate a universal lower bound on the ratio [16],

but the true significance of the ratio is unclear and the existence of a viscosity bound is

controversial [17]. For instance, it is not clear why the ratio, derived using relativistic field

theories, is independent of the speed of light c. Similarly, if gravity is somehow involved in

saturation of the bound, why does GN not appear?

Here, since the ratio holds universally for any local acceleration horizon, it appears

more fundamental than previous results involving AdS spacetimes. It seems that ~/4π is

the shear viscosity to entropy density ratio of the local vacuum as a thermal state. We

discuss the significance of this result and its connection to the gauge/gravity literature.

We conclude by examining open questions and possible extensions of our work.

2. Thermodynamics of spacetime

We now review the derivation [3, 8] of the Einstein equation as the equation of state arising

from the thermodynamics of local horizons. The motivating idea is that the origin of the

thermodynamic behavior of black holes is rooted in the thermodynamic behavior of the local

vacuum. In Minkowski spacetime when quantum fields are restricted to a Rindler wedge z >

|t|, the vacuum density matrix takes the form of a thermal state ρ = Z−1 exp(−2πHB/~) [4].

Notice that neither the “boost Hamiltonian” HB nor “boost temperature” TB = ~/2π have

dimensions of energy. This is because HB generates translations of dimensionless hyperbolic

boost angle. When HB is rescaled to generate proper time along a worldline with proper

acceleration a, TB is rescaled to the usual Unruh temperature ~a/2π [5].

The null surface z = t < 0 forming the edge of the Rindler wedge is one part of

the boundary of the past for the bifurcation plane z = t = 0, and therefore acts as a

causal horizon. Accelerated observers in the Rindler wedge can only access information on

spacelike slices bounded by the bifurcation plane. Since vacuum fluctuations are correlated

between the inside and outside of the wedge, these observers will see an entanglement
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entropy. In a continuum field theory this entropy scales with the area of the boundary,

but is divergent because of the ultraviolet (UV) divergence in the density of states. When

a UV regulator is introduced the entropy is proportional to the area of a horizon cross-

section, with a proportionality constant that could depend on the nature and number of the

quantum fields [18]. This motivates Jacobson’s assumption of a universal entropy density

s per unit horizon area, with s possibly dependent on the field content. A horizon entropy

δS = sδA will be contributed by a little horizon patch of area δA.

When the thermal density matrix ρ at temperature TB is perturbed, the change in

entanglement entropy is related to the change in mean energy via

dS = δ < E > /TB . (2.1)

Because the change in the mean energy is due to the flux into the unobservable region of

spacetime, which is perfectly thermalized by the horizon system, it is assumed to consist

entirely of heat. Thus, we have the thermodynamic Clausius relation dS = δQ/TB . Jacob-

son’s second assumption was this relation should hold for all causal horizons, with δQ as

the flow of boost energy across the horizon and dS the change in area entropy. Since the

area of the horizon is no longer fixed, the spacetime must become dynamical.

Now that the spacetime is no longer flat everywhere a local horizon is defined in analogy

with a black hole horizon. A global definition of the latter is the boundary of the past of

future null infinity. The segment of a black hole horizon to the past of a spatial cross-section

is the boundary of the past of that cross section. A local horizon at a point p is defined

in a similar way: choose a spacelike 2-surface patch B including p, and choose one side

of the boundary of the past of B. Near p this boundary is a congruence of null geodesics

orthogonal to B. These comprise the horizon.

At p one can invoke the equivalence principle to view the spacetime in the neighborhood

of p as approximately flat. In this small patch the idea is to construct a future pointing

approximate boost Killing vector χµ that vanishes at p and whose flow leaves the tangent

plane to B at p invariant. The normalization of χµ is chosen so that χµ;νχ
µ;ν = −2. The

construction can be done explicitly by solving Killing’s equation χ(µ;ν) = 0 order by order

in Riemann normal coordinates yµ. Eventually, at O(y3), no solution exists because a

general curved spacetime has no Killing vectors. Up to this ambiguity, our notion of time

along the horizon is given by the parameter v such that χµ∇µv = 1. This Killing time is

related to the affine parameter along the horizon generators by λ = −e−v, so the point p

is located at infinite Killing time and λ = 0. The expansion θ̂ and shear σ̂ of the horizon

in terms of Killing time are related to the expansion θ and shear σ in affine time as follows

θ̂ = e−vθ = −λθ, σ̂ = e−vσ = −λσ. (2.2)

Thus, the Killing expansion and shear vanish at p (as long as the affine quantities are not

diverging) and the horizon area is instantaneously stationary at this point. This defines

our notion of equilibrium.

The system is defined as the degrees of freedom just behind the horizon and we will

consider transitions that terminate in the equilibrium state at p. We define the heat as the
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flux of the boost energy current of matter across the horizon,

δQ =

∫

TM
µνχµdΣν , (2.3)

where TM
µν is the matter stress tensor. This and all subsequent integrals are taken over

a thin pencil of horizon generators centered on the one that terminates at p. It will be

convenient to work in terms of affine parameter and the affinely parameterized horizon

tangent vector kµ. Using the relation χµ = −λkµ and the definition of TB we thus have

δQ

TB
=

2π

~

∫

TM
µνk

µkν(−λ)dλd2A. (2.4)

To compute the entropy change δS = sδA we must follow the area change of the horizon,

δA =

∫

θ dλd2A, (2.5)

where θ = d(ln d2A)/dλ is the expansion of the congruence of null geodesics generating the

horizon. Using the Raychaudhuri equation

dθ

dλ
= −

1

2
θ2 − σµνσ

µν − Rµνkµkν (2.6)

the entropy change is thus given up to O(λ2) by

δS = s

∫
[

θ − λ

(

1

2
θ2 + σµνσµν + Rµνk

µkν

)]

dλd2A, (2.7)

where all quantities in the integrand are evaluated at p.

In [3] Jacobson chose θ = σµν = 0 at p, which is required for equilibrium if the affine

parameter λ is assumed to be the natural “time” of the system. Here and in [8] we consider

the Killing parameter v to be the natural time, so vanishing affine expansion and shear at

p are not necessarily needed a priori for our notion of equilibrium. On the other hand, if

it is required that δS = δQ/TB at all points p and for all null vectors kµ, we first find that

the affine expansion at p must vanish since the heat flux (2.4) vanishes at p. At O(λ) the

integrands of (2.4) and (2.7) then imply

(2π/~)TM
µνkµkν = s (σµνσµν + Rµνkµkν). (2.8)

Note that the shear squared term can be written in terms of derivatives of kµ, which can

be independently chosen at p. Therefore the kµ derivative part of (2.8) implies the shear

must also vanish at p if the Clausius relation is to hold.

However, (2.2) tells us the shear and expansion with respect to Killing time fall off to

zero at p as ∼ e−2v when θ and σ vanish, while only as e−v when θ and σ are non vanishing.

In [8] it was hypothesized that for a slower approach to equilibrium the Clausius relation

may not apply and thus dS > δQ/TB . In this case there is an entropy balance law

dS = δQ/TB + diS (2.9)
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where diS represents internal entropy production for a system out of equilibrium. As is

standard in non-equilibrium thermodynamics we consider the system to be still near enough

to equilibrium so that the entropy and temperature take their local equilibrium values. The

production term diS should be of O(λ) to be consistent with the notion of equilibrium at

p. We also assume that diS depends only on squared gradients of kµ. Entropy production

from the squared gradients of state variables is a universal property of non-equilibrium

thermodynamics [19]. Given these assumptions, if the conjectured balance law (2.9) is to

hold at all p and for all kµ, θ is still required to vanish and the entropy production term is

diS = −s

∫

σµνσµνλ dλd2A. (2.10)

In terms of Killing time this new term has the form

diS = s

∫

σ̂µν σ̂
µνdvd2A, (2.11)

which looks like the standard [20] entropy production term for a fluid with shear viscosity η,

diS =
2η

TB

∫

σ̂µν σ̂µνdvd2A, (2.12)

if we identify η = ~s/4π.

The remaining kµ part of the entropy balance law yields

Rµν + Φgµν = (2π/~s) TM
µν (2.13)

where Φ is a so far undetermined function. This corresponds to the tracefree part of the

Einstein equation, with Newton’s constant determined by the universal entropy density s,

GN =
1

4~s
. (2.14)

Conversely, s = 1/4~GN = 1/4L2
P , so the entropy is identified as one quarter the area in

Planck units, like the Bekenstein-Hawking black hole entropy. The free function Φ can be

fixed if it is assumed that the matter stress tensor is divergence free, corresponding to the

usual local conservation of matter energy. Taking the divergence of both sides of (2.13) and

using the contracted Bianchi identity ∇νRµν = 1
2∇µR we then find that Φ = −1

2R − Λ,

corresponding to the Einstein equation with (undetermined) cosmological constant Λ.

3. Hydrodynamic formulation

3.1 Preliminaries

As noted above, the shear squared entropy production term (2.11) is very similar to the

entropy production term due to the shear of the fluid flow in viscous hydrodynamics.

However, at this stage it is not at all clear whether it makes sense to identify η as shear

viscosity. The shear in (2.11) is a gradient of a null horizon tangent vector. Can we think

of this horizon tangent as a flow velocity and a cross-section of the horizon as a “fluid”

– 6 –
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system? Also, are we in a near-equilibrium regime where the horizon shear is small (both

in space and time) compared to some microscopic length scale so that the constitutive

relations are valid and hydrodynamics is an accurate description? It turns out the answers

to these questions are in the affirmative and it is possible to derive the entropy balance

law and entropy production term we postulated in (2.9) and (2.11) from hydrodynamics.

Before we start, it will be necessary to briefly review (relativistic) hydrodynamics.

In modern terminology, hydrodynamics is an effective theory describing the dynamics

of perturbations about an equilibrium state on long length scales. Although the fluid as a

whole is not in equilibrium, we assume it is close enough to it such that equilibrium states

with a local temperature T exist at every point. “Long” wavelengths mean long compared

to a relevant microscopic scale for the fluid. This is normally taken as the mean free path

ℓmfp, which sets the characteristic length scale over which a system equilibrates locally.

In this regime quantum fluctuations are suppressed and the theory is classical. Since this

is an effective theory our knowledge of the fluid is restricted to a finite set of variables:

typically the equilibrium proper energy density ǫ and pressure P , temperature T (x) and

local fluid velocity uµ(x), where uµuµ = −1. The hydrodynamic equations are simply the

conservation of energy and momentum ∇µT µν = 0 in the simplest case where there are

no other conserved currents ∇µJµ = 0 and the relativistic chemical potential is zero. The

stress tensor T µν is a function of the fluid variables and has the form of an equilibrium

perfect fluid plus a dissipative part Πµν

T µν = (ǫ(T ) + P (T ))gµν + P (T )uµuν + Πµν(T,∇u,∇T ). (3.1)

This form of the stress tensor alone is not sufficient to determine the dynamics. However,

if ∇u and ∇ ln T are ≪ ℓ−1
mfp, the dissipative part of the stress tensor Πµν is smaller than

the zeroth order perfect fluid part and can be expanded in terms of the derivatives of the

fluid velocity. At each point x there is the freedom to boost uµ(x) such that Πµνuν = 0.

With this standard choice of gauge, at first (linear) order the corrections depend explicitly

on the velocity derivatives and have the form [20]

Πµν = PµαP νβ

[

η

(

∇αuβ + ∇βuα −
2

3
gαβ∇γuγ

)

+ ξgαβ∇γuγ

]

(3.2)

where Pµν = gµν + uµuν and we have considered a fluid of 3 spatial dimensions. In this

“Landau gauge” the spatial parts of the stress tensor are related to momentum fluxes. The

shear viscosity η and bulk viscosity ξ in this constitutive relation are phenomenological

coefficients at this level and are determined by experiment or matching to the complete

microscopic theory. The derivative expansion can in principle be continued on to higher

orders, with each extra term suppressed by powers of ℓmfp/L, where L is the characteristic

length scale of variations in uµ and T .

Returning to the problem at hand, what can we take to be the fluid system? As stated

above, an obvious candidate for the “fluid” here is the local acceleration horizon itself, with

kµ as the fluid velocity. But the technical drawback is the horizon is a null surface and

kµ is a null vector instead of being unit timelike. However, we can employ the notion of a

stretched horizon pioneered by Price and Thorne to describe the physics of globally defined
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black hole event horizons [11]. The stretched horizon is a timelike surface that lives close

enough to the event horizon that it can capture its essential physics. More specifically, the

idea is to perform a 2+1+1 split of spacetime. The foliating spacelike surfaces are surfaces

of constant time according to a family of accelerated observers with 4-velocity Uα defined

such that Uµ = α dt for lapse function α. In the familiar special case of a Schwarzschild

geometry α = (1− 2M/r)1/2 and t are surfaces of constant Schwarzschild time. The event

horizon itself is characterized by the null generator lµ and can be foliated into spacelike

2-surfaces by surfaces of constant horizon time. In the Schwarzschild example lµ = d/dv

and v = const., where v is the Killing time on the horizon. The distance from the horizon

is naturally parameterized by the affine parameter along the ingoing null rays (for example

just the radial coordinate r in Schwarzschild), or α equivalently by a change of variables.

The stretched horizon is defined as a surface of fixed constant lapse (or radial coordi-

nate) such that α ≪ 1. The stretched horizon itself has unit spacelike normal Nµ. Since

this vector field can be extended throughout the spacetime as the normal to all surfaces

of constant α, we have a 2+1+1 split defined by Uµ and Nµ. We will always work in the

limit of the true horizon α → 0, where

αUµ → lµ

αNµ → lµ (3.3)

A local stretched horizon in the limit where α → 0 will be used to approximate the acceler-

ation horizon, which is the boundary of the past of B. As shown in figure 1, the stretched

horizon lives just “inside” the true causal/acceleration horizon. The fluid itself lives on the

spacelike cross section of the stretched horizon defined with the fluid velocity Uµ.

Although we have formally identified the stretched horizon system as a “fluid”, one

may wonder if this choice has any physical interpretation. Since the stretched horizon

is a 2+1 dimensional surface, the fluid must be 2+1 dimensional. In the literature, [21]

considered the null vector lµ associated with null hypersurfaces as an elastic displacement

vector of a “spacetime solid” in a long wavelength limit. The entropy of the solid is

assumed to be a quadratic functional of derivatives of this vector. When this entropy is

maximized gravitational field equations can be obtained. The idea of a fluid living on

a lower dimensional surface is also consistent with the hydrodynamic limit of AdS/CFT

correspondence. However, there the fluid is taken to be a real gauge theory fluid living on

the timelike boundary of AdS spacetime. Is there a real fluid on the stretched horizon here?

We argue that the Minkowski vacuum, which looks like a thermal state when localized

into the Rindler wedge of spacetime, obeys the holographic principle [12, 13]. Its properties

are encoded into the 2+1 dimensional stretched horizon boundary of the wedge. Some

similar ideas can be found in [22]. This appears counterintuitive at first because the vacuum

in the Rindler wedge looks like a 3+1 dimensional bath of thermal radiation. However,

the entanglement entropy associated with the vacuum is (in the absence of a UV cutoff) a

formally divergent quantity that scales like the cross-sectional area of the horizon boundary,

not the volume of the wedge. Heuristically, the entropy density of the radiation bath goes

like T 3/~
3. The key point is that T is a local Unruh temperature that is a function of the

– 8 –
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S

H

p

Figure 1: Representation of how the stretched horizon S approximates the past horizon H . Note

that 2 spatial dimensions are suppressed. Each point in the stretched horizon represents the fluid

at constant time τ . As α → 0, points in the stretched horizon are mapped to points in the past

horizon along the ingoing null rays as indicated. A point at infinite τ is mapped to the bifurcation

point p.

proper length to the horizon: ∼ ~ℓ−1. The total entropy is

S =

∫

ℓ−3dℓd2A ∼ δA ℓ−2
c , (3.4)

where δA is the cross-sectional area of a horizon patch and ℓc is the UV cutoff length.

A similar calculation for total energy using density ∼ T 4/~
3 also yields an area scaling

and stretched horizon energy density ~ℓ−3
c . Since these quantities scale like area densities

instead of the usual volume densities they will not be extensive unless we identify them with

the stretched horizon boundary surface. The degrees of freedom in the vacuum thermal

state are effectively packed into the stretched horizon.

Further evidence for this picture is Brustein and Yarom’s work [23] showing that vac-

uum fluctuations in any sub-volume of Minkowski space scale as the area of the boundary

and diverge unless there is a UV cutoff. They used this result to argue that these fluctua-

tions have a representation in terms of a high temperature theory on the boundary, which

in the case of the Rindler wedge, is reminiscent of the near-horizon thermal atmosphere

with its diverging local temperature. In light of the heuristic arguments above and these

results in the literature, we postulate that if hydrodynamical perturbations of the thermal

atmosphere exist they should be manifested in the dynamics of a stretched horizon. In par-

ticular, in the hydrodynamic limit the degrees of the freedom in the thermal atmosphere

can be represented as a real fluid living on the boundary.

– 9 –



J
H
E
P
1
1
(
2
0
0
8
)
0
4
8

3.2 Horizon fluid dynamics

We now examine the dynamics of the horizon fluid in detail. First we discuss the fluid in

equilibrium. As in section 2 around the arbitrary point p in B we can invoke the local flat

spacetime approximation to define the local vacuum state. Around this point we have the

approximate set of Poincare symmetries, including boosts generated by Killing vector χα,

which is defined to vanish at p. Using Rindler coordinates adapted to this boost Killing

field χµ = ∂
∂τ , the metric in the neighborhood of p has the approximate form

ds2 ≈ −κ2ρ2dτ2 + dρ2 + dx2 + dy2. (3.5)

The lapse function α = κρ, where κ is an arbitrary constant associated with the normal-

ization of boost time τ . In section 2, κ was scaled to be unity and τ was a dimensionless

boost angle. The local Rindler (Killing) horizon at α = 0 can be approximated by its own

stretched horizon for constant α → 0. The Killing vector χα describes the horizon fluid rest

frame. However there is the freedom to boost to a moving frame in the xi ≡ (x, y) directions

τ ′ = γ(τ − βixi) (3.6)

x′i = γ(xi − βiτ), (3.7)

to characterize a moving horizon fluid. In this state the flat spacetime (boosted) Rindler

horizon has fixed area and as expected the entropy is unchanging.

Just as in section 2 we identify the Unruh temperature ~/2πρ = ~κ/2πα with the

local equilibrium temperature. Notice this has the Tolman law form αT = T0 = const.,

where T0 = ~κ/2π is analogous to a position independent Hawking temperature. In this

equilibrium state we expect the fluid is described by a surface stress tensor in the perfect

fluid form

T S
µν = (ǫ + P )UµUν + Pγµν (3.8)

where γµν = gµν − NµNν and the superscript S indicates this is a surface tensor. Just

like entropy density s, the surface energy density ǫ and pressure P are formally divergent

quantities that may depend on the number and nature of fields in the thermal atmosphere.

We will allow for a UV cutoff length ℓc, whose value is initially unknown, which will render

all quantities finite. The stretched horizon boundary metric ((3.5) with ρ fixed) is flat and

invariant under translations in time and space. These local translational symmetries in the

boundary imply the surface stress tensor is conserved. Using the thermodynamic relations

ǫ + P = sT , dǫ = Tds, and dP = sdT we find the entropy density current

∂µ(sUµ) = 0 (3.9)

is conserved, as expected.

The stretched horizon system of section 3.1 and the equilibrium fluid do not agree in

general: the fluid velocity Uα is not proportional to χα except as τ → ∞ at x = y = 0.

We have chosen this point because in the limit α → 0, it approaches the bifurcation point

at p along the null ray shown in figure 1. This supplies the notion of local equilibrium in

the general fluid. For this non-equilibrium horizon fluid entropy is created externally via
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heat flux from the outside of the system, and internally from the friction of expansions

and shears. This implies the horizon area is not fixed, the entropy current in (3.9) is not

conserved, and the spacetime can no longer be exactly flat. To parameterize the near-

horizon curved metric we follow the construction used by [24] to study perturbations of

black brane metrics and assume the previously constant κ in (3.5) and boost parameter βi

in (3.7) are functions of stretched horizon coordinates xµ ≡ (τ, x, y):

κ → κ(xµ)

Uµ = α−1 γ(xµ)

(

∂

∂τ
+ βi(xµ)

∂

∂xi

)

. (3.10)

κ(xµ) and the boost parameter βi(xµ) will approach constant values at (∞, 0, 0), where

there is no entropy production and the expansion and shear must vanish.

For hydrodynamics to be an applicable description, the horizon gradients ∇ν ln κ (or

equivalently of ln T ) and ∇νβ
i(xµ) (or of Uµ) in the local Rindler coordinates need to be

≪ ℓ−1
mfp at (∞, 0, 0). By dimensional analysis the inverse mean free path of this thermal state

is position dependent and ∼ g2T/~, where g2 is an unknown dimensionless parameter.3

The gradients and the inverse mean free path are divergent as we approach the true

causal horizon α → 0, but their ratios are finite. The horizon gradient of the local temper-

ature is ∇ν ln T ∼ α−1∇ν ln κ(xµ), while eq. (3.3) implies that the gradient has the form

∇νU
µ = α−1∇ν l

µ. (3.11)

Thus, we need ∇ν ln κ,∇ν lµ ≪ g2T0/~ ∼ κg2 where now xµ = (v, xi) for horizon Killing

time v. This criterion is clearly satisfied for derivatives in v. This can be seen because

the local equilibration time for the system is ∼ g−2κ−1, while the process is assumed to

occur for an infinite amount of Killing time before terminating in the equilibrium state.

Furthermore in section 2 there was no requirement on the size of the changes in xi direc-

tions of the horizon fluid. The stretched horizon cross-section at τ → ∞ (or equivalently

the 2-surface B as α → 0) can be tuned so that the changes in β(xi) and ln κ(xi) are

≪ κg2 near p. Thus, there is no obstruction to working in the hydrodynamic regime and

therefore an order by order expansion in derivatives is justified. In the next subsection we

will use the equations of hydrodynamics and the properties of stretched horizons to derive

the near-equilibrium entropy balance law (2.9) postulated in section 2.

3.3 Entropy balance law and vacuum viscosity

Following our above review of hydrodynamics, we can proceed to add a dissipative part to

the perfect fluid stress tensor (3.8) and expand it in derivatives of the flow velocity. Using

conservation of the stress tensor in the stretched horizon, the thermodynamic relations

ǫ + P = sT , dǫ = Tds, dP = sdT , and making the gauge choice ΠµνUν = 0, it follows [20]

that entropy balance law for the horizon fluid is

∂µ(sUµ) =
δQ

T
+

2η

T
σ̃µν σ̃µν +

ξ

T
θ̃2, (3.12)

3In the near horizon limit α → 0 the diverging temperature will be much larger than any other scale.
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where σ̃µν = 1
2(∇µUν + ∇νUµ − θγµν) and θ̃ = ∇γUγ . The Clausius term is the flux of

bulk matter energy into the fluid as heat. We will see below that the entropy change on

the left hand side of this equation is a finite quantity; the ratios of the divergent quantities

on the right hand side will be finite.

Integrating over a volume in the horizon fluid we find

∫

∂µ(sUµ) αdτd2A =
2πα

~κ

∫

[

TM
µνUµNνα + 2ησ̃µν σ̃µνα + ξθ̃2α

]

dτd2A (3.13)

Using Stokes theorem on the left hand side and then taking the limit α → 0 along with (3.3)

yields

δS(v) =
2π

~κ

∫

[

TM
µν lµlν + 2ησ̂µν σ̂µν + ξθ̂2

]

dvd2A, (3.14)

where the σ̂ and θ̂ are now the expansion and shear of the null lµ. Notice how the α’s have

also canceled out of the right hand side and the relativistic entropy balance law (3.13) has

been reduced to a non-relativistic form in the true horizon limit, with the left hand side

just a change in total entropy in Killing time. This result agrees with the equation for

the “long-time” evolution of black hole entropy in the membrane paradigm [11, 25], if we

identify ~κ
2π as a Hawking temperature. What is new here is the conceptual picture of (3.15)

as a consequence of relativistic hydrodynamics. This is not present in the Damour-Price-

Thorne membrane paradigm because no hydrodynamic limit was identified.4 Thus, η and

ξ are not just analogous to viscosities; in our framework it is consistent to identify them

as the shear and bulk viscosity of the horizon fluid.

Working with the bifurcation point parameterized as v = ∞ is not convenient; therefore

we change to the affine parameter λ = −κ−1e−κv so that p is at the origin: λ = 0 and

x = y = 0. Using the relations la = (dλ/dv)ka, θ̂ = (dλ/dv)θ, σ̂ = (dλ/dv)σ, yields

δS(λ) = −
2π

~

∫

[

TM
µνkµkν + 2ησµνσµν + ξθ2

]

λ dλd2A, (3.15)

which is consistent with the form of the entropy balance law (2.9) written in terms of

horizon quantities. The matter stress tensor term is the expected flux of boost energy,

while the viscous terms form the internal production piece diS. Notice that in general the

horizon bulk viscosity ξ also appears in addition to the shear viscosity η.

We can now proceed to expand the left hand side of (3.15) order by order in λ just

as in the original thermodynamic derivation discussed at the end of in section 2, assuming

that the entropy density s ∼ ℓ−2
c is an undetermined quantity such that δS = sδA. At

zeroth order the affine expansion at p is again required to be zero. Demanding the linear

order equation hold for all null ka and at any arbitrary point p in spacetime, along with

local conservation of the bulk matter tensor ∇νTM
µν = 0 yields the Einstein equation and

s equal to (4GN~)−1. Thus the UV cutoff length is fixed to be ℓc ∼ LP . The extra shear

4In general this limit does not exist. In the case of the thermal atmosphere outside the horizon of a

Schwarzschild black hole, ℓ−1
mfp ∼ TH/~ ∼ r−1

s , where TH the Hawking temperature. The Schwarzschild

radius rs is the characteristic size of the system. Spatial gradients of velocity necessarily scale as r−1
s so

there can be no hydrodynamic limit.
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term in the area change that comes from the Raychaudhuri equation (2.6) is consistent

with the balance law only if the shear viscosity to entropy density is η/s = ~/4π, just like

in the thermodynamical argument. The bulk viscosity ξ is not determined by the balance

law at this order because the affine expansion must be zero at p.

4. Discussion

We now conclude with some remarks on the meaning and possible implications of these

results. First, to summarize, we argued that the thermodynamic derivation of the Einstein

field equations can consistently be reformulated using hydrodynamics. The hydrodynamic

degrees of freedom for the local vacuum state are associated with local acceleration horizons

through any point. These are closely approximated by surrogate timelike stretched horizons

and can be thought of as 2+1 dimensional fluids. The equivalence principle is invoked to

view the neighborhood of each point as a piece of flat spacetime with a local Rindler

horizon. The entropy of these horizons is fixed and they describe local equilibrium for

the horizon fluid. The Unruh effect is then used to effectively assign these equilibrium

states a local temperature in the limit where the stretched horizon approaches the true

one. On length scales much larger than the mean free path, hydrodynamics must be an

accurate description of the physics. When the horizon fluid is out of the equilibrium state,

entropy is produced, the horizon area is no longer fixed, and the spacetime can no longer

be flat. The entropy balance law is then re-derived using the equations of hydrodynamics.

Together with the local conservation of bulk energy-momentum, the balance law implies

entropy changes must be governed by the Einstein equation. The Einstein equation thus

arises from the hydrodynamics of the local vacuum. Remarkably, this argument also fixes

the entropy density and shear viscosity of the vacuum such that their ratio is ~/4π.

Our picture seems to imply that microscopic dynamics (which could include quantum

gravity below the cutoff) leads to (semi-)classical Einstein gravity as collective hydrody-

namic behavior at low energies. Some ideas in the same spirit can be found in [26]. What

is interesting here is that some hydrodynamic properties turn out to be universal although

we initially allowed for the properties of the horizon fluid to depend on the number and

nature of the quantum fields and treated the viscosities as being purely phenomenological.

Once the value of the the UV cutoff scale ℓc was fixed to be roughly a Planck length, the

entropy density associated with all local Rindler horizons is the Bekenstein-Hawking en-

tropy density and η/s is universally ~/4π. All the dependence on the number and nature of

the quantum fields is apparently absorbed into the low energy Newton constant GN . This

in accord with arguments that the Bekenstein-Hawking entropy is dependent implicitly on

the nature of quantum fields through the renormalization of the gravitational constant and

is either partly or wholly the entanglement entropy of the thermal atmosphere [27]. These

results are puzzling here since no knowledge of microscopic physics was needed to obtain

them, only the balance law. We did, on the other hand, fix the value of cutoff scale to

be the Planck length “experimentally” by requiring the Einstein equation inferred from

the entropy balance law to agree with the observed Einstein equation. Low energy physics

(the balance law) and this one observation turn out to be enough to determine the entropy
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density and the shear viscosity of the fluid. The bulk viscosity though is one fluid property

not fixed by the balance law in this case and therefore it seems one would have to know

about the details of the microscopic physics in order to determine it.

As we noted in the introduction ~/4π also appears in the AdS/CFT literature as

the universal value of the shear viscosity to entropy density ratio of gauge theories with

an Einstein gravity dual. Could this be merely a coincidence or is there a connection

between this gauge/gravity duality result and our hydrodynamic derivation? First, in

both cases holography is crucial: we postulated the thermal vacuum state is holographic,

while AdS/CFT is a precise realization of the equivalence of a higher dimensional gravity

theory to a lower dimensional non-gravitational theory on a boundary. Furthermore, in the

duality, d dimensional gauge theories in high temperature deconfining phases are dual to

large black hole or black brane spacetimes in d+1 AdS [28]. Therefore one can use classical

perturbations of the large black hole or black brane spacetimes (see [29] for a review) to

perform analytical computations of the hydrodynamic transport coefficients. According to

the AdS/CFT dictionary the notion of viscosity is meaningful in the infrared regime of the

gauge theory, which corresponds to the near horizon limit of the translationally invariant

black object. In this sense these black objects have viscosities, just like the viscosity we

found for local stretched horizons. In both cases the hydrodynamics of a flat spacetime

system is manifested in the dynamics of a horizon boundary. However, since ~/4π holds for

all local acceleration horizons it seems more fundamental than the AdS/CFT results for

large black holes and black branes in AdS spacetimes. The dynamics of the local vacuum is

governed by gravity itself in the form of Einstein’s equations at each point in an arbitrary

spacetime, while the gauge theory dynamics is encoded in the perturbation theory about

an AdS gravity background.

In the duality the ~/4π result holds for both conformal and non-conformal gauge

theories. The common feature is strong coupling, in particular very large ’t Hooft coupling.

In general the shear viscosity to entropy density ratio of a gauge theory depends on the

value of the ’t Hooft coupling [30]. For weakly coupled theories there is a large separation

between the mean free path and any other microscopic scale, for example a thermal de

Broglie wavelength. In this intermediate region we can use a kinetic theory description

where viscosity is due to momentum transfer by quasiparticle motion. Larger mean free

paths correspond to an easier momentum transfer and higher viscosity. As the coupling is

tuned up the viscosity decreases and the kinetic theory description begins to break down.

Nevertheless, extrapolating all the way to strong coupling correctly indicates η/s ∼ ~ [29].

This viewpoint suggests the dynamics of the local vacuum thermal state should also be

strongly coupled in some sense. In fact, using the results of section 3.3 we can argue this is

the case. From η/s = ~/4π, we can roughly determine the other undetermined parameter

in our analysis: the dimensionless parameter g in the mean free path. First, from kinetic

theory we can estimate η/s ∼ ǫ/s lmfp. Using ǫ ∼ ~ℓ−3
c and s ∼ ℓ−2

c for the thermal state,

this implies that
η

s
∼ ~

ℓmfp

ℓc
. (4.1)

Thus, consistency with the entropy balance law implies the mean free path ℓmfp = ~

g2T
is
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of order the UV cutoff scale ℓc. Since ℓc ∼ ~/Tc, where Tc is the local temperature at the

cutoff, we find that g must be roughly of order unity.

We can think of the dimensionless parameter g2 in η/s ∼ ~/g2 as a coupling which

controls the size of the mean free path compared to the microscopic scale (here the UV

cutoff scale). If g2 ≪ 1 the mean free path would be much larger than the UV cutoff length

and the ratio much larger than ~. However the hydrodynamic derivation requires g ∼ 1

and ℓmfp ∼ ℓc, which is indicative of strong coupling.

Typically one would not consider the local vacuum thermal state a strongly coupled

system. For example, the vacuum fluctuations of a free field do not appear to be strongly

coupled. On the other hand, a free (scalar, for example) field theory in flat spacetime is

a continuum field theory and has infinite entanglement entropy. This conflicts with the

requirement of a finite entropy and a non-zero cutoff that allowed us to derive the entropy

balance law.5 The balance law implies we must have backreaction effects that distort

the flat background spacetime. These gravitational dynamics are imposed up to the UV

cutoff, where the physics is strongly coupled. In this regime the entropy density and shear

viscosity are universal constants proportional to one another. Since the bulk viscosity is

not determined, it may depend on the field content. If this is the case it would be similar

to a non-conformal gauge theory, where the bulk viscosity is determined by the mass scales

associated with the particular fields that break the conformal symmetry.

Since our picture of the local vacuum thermal state and its dynamics is consistent with

key aspects of the gauge/gravity dualities, perhaps it can provide a new perspective on the

puzzling aspects of the ~/4π ratio. For example, although the ratio is derived for relativistic

field theories, it is independent of the speed of light c (when we return to cgs dimensions).

The hydrodynamic derivation indicates the ratio is tied crucially to the physics of null

horizons. As we noticed in (3.15) the entropy balance law for the local acceleration horizon

reduces to a non-relativistic form. The same type of behavior was first noticed in the

membrane paradigm [11], where the behavior of a black hole event horizon is analogous to

non-relativistic fluid dynamics. Intuitively, the value of the speed of light should not affect

the behavior of the intrinsically ultra-relativistic degrees of freedom living on the stretched

horizon boundary surface.

An important open question is whether ~/4π is a universal bound on the shear viscosity

to entropy density ratio for all systems, even those that are non-relativistic. Experimental

data and the fact that viscosity is larger than ∼ ~ for weakly coupled systems indicate the

bound is plausible [16]. It is curious that the conjectured bound is independent of GN even

though it is saturated in the special class of theories with a gravity dual. However, in the

hydrodynamic derivation we relied only the general thermal properties of the Minkowski

vacuum. GN only appears (in the Planck length) when we require agreement with the ex-

periment and fix ℓc ∼ LP . This indicates that the bound, if it exists, may be a consequence

of the behavior of quantum fields when they are localized into regions of flat spacetime.

The conjectured bound may also be related to the Bekenstein entropy bound [31], a result

also first derived in a gravitational setting, yet which ultimately does not depend on GN .

5I thank Ted Jacobson for suggesting this argument.
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In the future it would be interesting to consider higher curvature corrections to the

assumed entropy density and compare the results for the viscosities to the gauge/gravity

literature. For example, in the case where the acceleration horizon entropy density is

assumed to be a (non-constant, polynomial) function of the Ricci scalar f(R) it was found

previously that η/s = ~/4π, while the bulk viscosity ratio is 3~f/4π [8]. Corresponding

results in the duality would require study of corrections to non-conformal gauge theories,

although an exact comparison is complicated by our inability to determine the bulk viscosity

even when an area entropy is assumed. In AdS/CFT, general corrections to Einstein

gravity involving contractions of the Ricci and Riemann tensors were found to modify the

shear viscosity to entropy density ratio at strong ’t Hooft coupling. With a choice of one

parameter the ratio can now be less than ~/4π [32, 33]. A comparison here would require

assuming the local horizon has an entropy density proportional to these contractions and

checking the effects in the entropy balance law (3.15).

Finally, we have only considered linearized hydrodynamics, which was sufficient to de-

rive the Einstein equations and fix the shear viscosity of the local Rindler stretched horizon.

However, [24, 34] recently showed the form of the hydrodynamic stress tensor on the AdS

boundary is determined up to 2nd order in derivatives by demanding the Einstein equations

(with negative cosmological constant) hold for perturbations about black brane spacetimes.

The procedure is roughly the inverse of our hydrodynamic derivation: instead of starting

with the hydrodynamics of local Rindler stretched horizon and deriving Einstein’s equa-

tions, they impose Einstein’s equation order by order in a derivative expansion to derive

the stress-tensor at the AdS boundary. The resulting perturbative metrics are dual to

solutions of the Navier-Stokes equations. The set of hydrodynamic coefficients at the next

order in the stress tensor characterize relaxation times [35, 36]. In our case it would be

interesting to see whether higher derivative terms in the stress tensor of the local Rindler

stretched horizon can be meaningfully defined and fixed by the entropy balance law.

Acknowledgments

I am grateful to Jacob Bekenstein and Ted Jacobson for helpful discussions on drafts of this

paper. I also thank Itzhak Fouxon for a suggestion. This research was supported by the

Lady Davis Foundation at Hebrew University, and by grant 694/04 of the Israel Science

Foundation, established by the Israel Academy of Sciences and Humanities.

References

[1] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333.

[2] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206].

[3] T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett.

75 (1995) 1260 [gr-qc/9504004].

[4] J.J. Bisognano and E.H. Wichmann, On the duality condition for a hermitian scalar field, J.

Math. Phys. 16 (1975) 985.

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD7%2C2333
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C43%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C1260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C1260
http://arxiv.org/abs/gr-qc/9504004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C16%2C985
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C16%2C985


J
H
E
P
1
1
(
2
0
0
8
)
0
4
8

[5] W.G. Unruh and N. Weiss, Acceleration radiation in interacting field theories, Phys. Rev. D

29 (1984) 1656.

[6] T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically

symmetric spacetimes, Class. and Quant. Grav. 19 (2002) 5387 [gr-qc/0204019];

A. Paranjape, S. Sarkar and T. Padmanabhan, Thermodynamic route to field equations in

Lancos-Lovelock gravity, Phys. Rev. D 74 (2006) 104015 [hep-th/0607240];

D. Kothawala, S. Sarkar and T. Padmanabhan, Einstein’s equations as a thermodynamic

identity: the cases of stationary axisymmetric horizons and evolving spherically symmetric

horizons, Phys. Lett. B 652 (2007) 338 [gr-qc/0701002].

[7] M. Akbar and R.-G. Cai, Thermodynamic behavior of Friedmann equation at apparent

horizon of FRW universe, Phys. Rev. D 75 (2007) 084003 [hep-th/0609128].

[8] C. Eling, R. Guedens and T. Jacobson, Non-equilibrium thermodynamics of spacetime, Phys.

Rev. Lett. 96 (2006) 121301 [gr-qc/0602001].

[9] E. Elizalde and P.J. Silva, F(R) gravity equation of state, Phys. Rev. D 78 (2008) 061501

[arXiv:0804.3721].
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